
MITANDAO

Social network analyzer

DEVELOPER GUIDE

Developer guide

Content
What is Mitandao?..2
How to create module into the Mitandao..2

Introduction..2
Modules types overview..2
How to create a module...2

How to use the user data storage..3
Introduction..3
How to work with labellers..3
How to use this to copy user data..4

How to use the Mitandao UI framework..5
Introduction..5
Automated panel generation..5
Providing not reusable panel..7
Providing reusable panels..8

How to create from variable module parameter..10
Introduction..10
Variables versus module parameters...10
Creating and adding new modules...10
Linking modules..12

Mitandao – Social network analyzer 1

Developer guide

What is Mitandao?
Mitandao is an open source software for social network analysis which can be used as a stand alone
application or as a library. Mitandao is an extensible application, where you can add your own
modules for network analysis. Mitandao library provides useful framework for creating social
network analysis application. You can find all important information about Mitandao, as
application, library or a framework for developers in our user guides.
Mitandao was developed by group of students of Faculty of Informatics and Information
Technologies, Slovak University of Technology in Bratislava, Slovakia.

How to create module into the Mitandao

Introduction
All the inputs, outputs, algorithms and filters in the Mitandao project are dynamically loaded
modules. The user can create it's own module and let the Mitandao to load it. This module is then
usable in the same way as any other module to participate in the work flow.

How to do this is described in this guide.

Modules types overview
There are four types of modules:

– Input Module used to load the social network from file, database etc.

– Output Module used to save the social network to file, database etc.

– Filter Module used to remove nodes from the loaded graph according to some condition

– Algorithm Module used to analyze the graph

How to create a module
Each of module types has defined its own interface named InputModule, OutputModule,
FilterModule and AlgorithmModule.

Each of this modules extends the Module interface, which defines the methods:

public Graph analyze(Graph graph);
public String getName();
If you would like to create a module, you have to implement one of the interface and the methods
analyze and getName.
The method getName is used to return some human readable name of the module. It is used for
example in the Wizard in the Mitandao GUI to fill the combo boxes with set of available modules.
The method analyze is used to call the module to do, what it is for. It gets the currently last graph as
input and it returns the new version of the graph (for example with assigned calculated values to the
nodes).
If you would like to create for example an input module, you would have to create a class,
implement the InputModule interface and implement the analyze and getName methods.
public class SomeFileReader implements InputModule {

Mitandao – Social network analyzer 2

Developer guide

@Override
public Graph apply(Graph graph) throws Exception {

 Graph readGraph;
// read the graph
return readGraph;

}

public String getName() {
return("Example input module");

}
}

The method apply throws Exception, if any exception occurs. This exception is then processed with
the Mitandao core.

This module is compilable and loadable to the Mitandao and usable in the work flow but it has a
problem. It takes a module as input and returns an another instance. It means, it ignores the input
module, so if somebody creates a work flow, where this module is not the first part of the work
flow, any analyze made before this module is used is lost. So all the time, when you create any
module, copy all the created data to the instance of the graph you get. How to do this is described in
the section How to use the user data storage.

One more thing to know is, that this module does not get any input from the user. If you need to
create a module, which gets input from the user via the graphical user interface read the How to use
the Mitandao UI framework section. If you need to create a module, which gets input via the
MitandaoImpl's setModuleParameters method, read the How to create from variable module
parameter.

How to use the user data storage

Introduction
The user data are stored in the graph under the specified key (usually, this is the qualified name of
the module class). Mitandao library contains two data holder – MitandaoVertexLabeller and
MitandaoEdgeLabeller.

How to work with labellers
You can get MitandaoVertexLabeller and MitandaoEdgeLabeller directly for the specific key.

MitandaoVertexLabeller labeller =
 (MitandaoVertexLabeller)

graph.getUserDatum(key);

But the preferred way is to obtain it from MitandaoVertexLabeller directly, because it is type
safe and if the datum under the key does not exist, new MitandaoVertexLabeller is created.

MitandaoVertexLabeller labeller = MitandaoVertexLabeller.getLabeller(graph,
key);

Mitandao – Social network analyzer 3

Developer guide

The nodes names are stored under the key

 MitandaoVertexLabeller.DEFAULT_VERTEX_LABELER_KEY

You can access it in a simplified way without the key.

MitandaoVertexLabeller labeller = MitandaoVertexLabeller.getLabeller(graph);

All data are represented as Strings. You can access the data in labeller through method getLabel.

labeller.getLabel(vertex);

How to use this to copy user data
In the section How to create a module there was written that the given graph in the analyze method
has not to be ignored and the data given in the specific method has to be copied into this graph. The
following example demonstrates how to do this.
For example you would like to create an input module, which reads the pajek file using the Jung's
load method. It is done like this.

public Graph apply(Graph graph) throws Exception {
// create instance of reader from the JUNG library
PajekNetReader reader = new PajekNetReader(true);
// loading the graph
Graph outputGraph = reader.load(getFilePath());

// getting the labeler under which are stored the data from
the loading
StringLabeller pajekLabeller = StringLabeller.getLabeller(outputGraph,
PajekNetReader.LABEL);

// getting the mitandao labeler, where the data I would like
to store

MitandaoVertexLabeller mitandaoLabeller =
MitandaoVertexLabeller.getLabeller(outputGraph);

// copy the labels from the JUNG's labels to the Mitandao
labels

MitandaoGraphUtils.copyVertexLabels(pajekLabeller,
mitandaoLabeller);

// removes the JUNG's labels
outputGraph.removeUserDatum(PajekNetReader.LABEL);

// copy the data from the graph loaded using the load method
to the graph given from the previous analysis

return MitandaoGraphUtils.union(outputGraph, graph);
}

Mitandao – Social network analyzer 4

Developer guide

How to use the Mitandao UI framework

Introduction
The Mitandao UI framework is a part of Mitandao project, which makes it easy to build graphical
modules into the Mitandao GUI.

There are three ways how to build graphical user interfaces using this framework:

– Let the framework generate the graphical panel from the module according to the annotations
provided in this module

– Provide your own (not reusable) panel and connect it to the specific module using the panel's
annotations

– Provide your own reusable panel and specify its name, so it can be used in other modules and
you can access it through annotations. The example of this panel is an open or the save dialog.

In the next section we will describe all of this three ways in detail.

Automated panel generation
This is the simplest way how to use the Mitandao UI framework. To create a graphical panel, you
need to create a module (how to do this is described in the How to create module into the Mitandao
section).

For example this simple module:

public class SampleOutputModule implements OutputModule{
private String example = "this is an example";
private Integer exampleInteger = new Integer(12);

public String getExample() {
return example;

}

public void setExample(String example) {
this.example = example;

}

public Integer getExampleInteger() {
return exampleInteger;

}

public void setExampleInteger(Integer exampleInteger) {
this.exampleInteger = exampleInteger;

}
…

Mitandao – Social network analyzer 5

Developer guide

There are two parameters in this module:

private String example

and
private Integer exampleInteger

What we need is to set these two parameters as input parameters of the module to have two text
fields generated in the graphical panel. This is done via the @Parameter annotation. For example:

@Parameter
private String example = "this is an example";
@Parameter(displayName="Mitandao integer parameter")
private Integer exampleInteger = new Integer(12);

In the first example, there is set only the Parameter annotation, in the second there is set the display
name too. It means, that in the first example the label before the text field will be exactly the same
as the name of the parameter – 'example'. In the second parameter, it will be the 'Mitandao integer
parameter' (as described in the display name). In the following figure there is shown how this
module will look like and how are the parameters mapped to the screen.

The framework provides functionality to copy the values from the module to the panel and from the
panel to the module automatically. It also provides functionality which takes care about the data
type checking (e.g. if the parameter is type of double, the user can copy only the type of double into
the generated text field).

Mitandao – Social network analyzer 6

Developer guide

Constraints
– Every parameter has to have the getter and setter method

– The supported parameter types are only
– java.lang.String
– java.lang.Double
– java.lang.Integer

Providing not reusable panel
This is the second way how to create graphical modules into the Mitandao project. In the previous
part it was described how to let the framework to generate the panel. In this section you will need to
create your own panel. This can be useful if you need to create a more complex panel than a set of
label - text field rows (e.g. buttons, radio buttons etc.).

At first, you will need to create a module, then the panel and connect module with the panel via the
@Panel annotation. For example:

@Panel("sk.fiit.mitandao.modules.inputs.ItsPanel")
public class SomeModule implements InputModule {
…

The parameters on the module side are marked with the @Parameter annotation (the same way, as
described in the previous section). For example:
...
@Parameter
private String helloWorld = "Hello world";
…

The parameters on the panel side are marked with the @RemoteParameter annotation. They must
have the same name as the parameters on the module side. For example, the panel for the module
from above has to have the following parameter:
@RemoteParameter
private String helloWorld;

This means that the parameter helloWorld is the same parameter in the panel and in the module.
The values between them are copied by the Mitandao UI framework.
The module side is from now the same as the module described in the first chapter. The next thing
is to create the Panel side. The class has to extend JPanel and implement the ParameterSetter
interface. The ParameterSetter interface defines the following two methods:
public void initialize();
public void setParameters();

The usage of this panel by the library is as follows:
At first, the parameters' values from the module instance are copied to it's remote parameters on the
Panel. Then the initialize() method is called. There should be the creation of graphical
components and setting their values according to the @RemoteParameter parameters.
The next step is the user's work with this panel (e.g. filling the values of the components etc.). Then,
when the user finishes the work with the panel, the setParameters() method is called. There
should be the values from the graphical components copied to the @RemoteParameter parameters.

Mitandao – Social network analyzer 7

Developer guide

Finally, the values from the @RemoteParameter parameters are copied to the Module. The example
of the remote panel looks as follows:
public class ItsPanel extends JPanel implements ParameterSetter {

@RemoteParameter
private String helloWorld;
private JTextField textField = new JTextField();
@Override
public void initialize() {

textField.setText(helloWorld);
add(textField);

}

@Override
public void setParameters() {

helloWorld = textField.getText();

}
…

Constraints
– Every parameter has to have the getter and setter method

– The supported parameters types are only
– java.lang.String
– java.lang.Double
– java.lang.Integer

Providing reusable panels
In the previous section there was described the way how to create custom panels. These panels were
connected to the module via the @Panel annotation. But these panels were usable only from
modules, which has the exactly same parameters as the remote panel's remote parameters. In
general, these panel are not reusable.

If you need to create custom panels that are reusable in other modules, you need to create them as
follows.

For example, you would like to have a file chooser. It is a panel, which has a JTextField,
JButton and JFileChooser which cooperates in a specific way. You wold like to use this panel in
many other modules.

At first, you need to create a Panel (let's call it FileChooserPanel), that extends JPanel and
implements the CustomPanels interface. The CustomPanels interface defines the following two
methods:

public String getValue();

and

public void setValue(String value);

Mitandao – Social network analyzer 8

Developer guide

which corresponds to the input and output of specific customPanel. The module side is
implemented in the same way, as in the first section of this document, and the reusable panels are
accessible thought the @SpecialParameter annotation like this:

@SpecialParameter(SpecialParameterType.FILE_OPEN_DIALOG)
private String filePath = "/some/path/pajekFile.net";

So, what it means. At first we will explain the
private String filePath = "/some/path/pajekFile.net";

line. When the FileChooserPanel is created, the setValue(String value) method is called
with input value from filePath variable. It means that you will need to copy this value in the
method setValue to some graphical component. For example:

public void setValue(String value) {
if (value == null) return;
pathField.setText(value);

File currentFile = new File(pathField.getText());
if (currentFile != null) {

getChooser().setSelectedFile(currentFile);
}

}

Then the user is able to work with this panel (e.g. choose some other file). After this, the method
getValue() is called on this panel. It should return the value, which you want to have as an output
value of this panel (e.g. the chosen file). It should look like this:

public String getValue() {
return pathField.getText();

}

The value returned from this method is then copied to the filePath field.
Now it will be described, how to make this panel accessible via the @SpecialParameter
annotation.
You will need to register this panel to the SpecialParameterType enumeration. The registration
looks like this:
FILE_OPEN_DIALOG("sk.fiit.mitandao.gui.modulepanels.predefinedpanels.FileOpenPa
nel")

where the FILE_OPEN_DIALOG is the symbolic name and the
"sk.fiit.mitandao.gui.modulepanels.predefinedpanels.FileOpenPanel" is the full name
of the panel.
Now, the FILE_OPEN_DIALOG is usable in any Mitandao module.

Constraints
– Every parameter has to have the getter and setter method

– The reusable custom parameter (panel) has to have only one input and only one output.
– The reusable custom parameter (panel) has to have only String input and output.

Mitandao – Social network analyzer 9

Developer guide

How to create from variable module parameter

Introduction
The MitandaoImpl class, which is the main interface to the Mitandao library, has for this purpose
this to interesting methods:

public void setModuleParameters(Module module, Map<String, Object> parameters)
public Map<String, Object> getModuleParameters(Module module)
This methods sets and gets the values from and to the modules' parameters. How to mark the
module's parameter to be usable this two methods is described in this section.

Variables versus module parameters
If you create a module, which has for example a variable declared like this

private String someParameter = "This is some parameter";
you can not use the methods described above to maintain the content of this variable. For the library
it is only some private variable, which is ignored. To make from this variable module parameter use
the Parameter annotation and create standard getter and setter methods to it. An example of a
String module parameter is as follows.

@Parameter
private String someParameter = "This is some parameter";
public String getSomeParameter() {

return someParameter;
}

public void setSomeParameter(String someParameter) {
this.someParameter = someParameter;

}
Now the someParameter is a module parameter and the methods setModuleParameters and
getModuleParameters are usable to maintain it's content.

Constraints
– Every parameter has to have the getter and setter method

– The supported parameter types are only
– java.lang.String
– java.lang.Double
– java.lang.Integer

Creating and adding new modules
After deciding what type of module you want to create you have implement the appropriate
interface. Like described in library guide there are 4 possible module types. This types have
following interface names:

Mitandao – Social network analyzer 10

Developer guide

– InputModule
– AlgorithmModule
– FilterModule
– OutputModule
The corresponding package names are:
– package sk.fiit.mitandao.modules.inputs;
– package sk.fiit.mitandao.modules.algorithms;
– package sk.fiit.mitandao.modules.filters;
– package sk.fiit.mitandao.modules.filters;

A simple example of an module implementation:
package sk.fiit.mitandao.modules.algorithms;
import sk.fiit.mitandao.modules.interfaces.AlgorithmModule;
public class Betweeness implements AlgorithmModule {

@Override
public Graph apply(Graph graph) throws Exception {

return graph;
}

@Override
public String getName() {

return "JUNG Betweeness Centrality";
}

}

After implementing the appropriate interface you have to override two methods, which come from
the parent interface – Module. All 4 interface mentioned above are directly inherited from this
interface.

public interface InputModule extends Module{
}

The apply() method is the executive method which work with the Graph object /create graph from
some data source, calculate measurement, change structure, show the result/.

The getName() method is used for getting the name so it can be showed in the list of available
modules in appropriate wizard tab.

Constraints
– Every module has to implements one of the interfaces and override mentioned methods.

Mitandao – Social network analyzer 11

Developer guide

Linking modules
The Mitandao uses dynamical loading of the module classes in order to give you the list of available
modules. Therefore it does not search classes on the standard classpath, but on the paths specified in
the special XML file named modules_paths.xml. This XML file has to be placed somewhere on the
classpath (the easiest way is to put it next to the mitandao.jar file).
The sample XML file looks like this:

<modulePaths>
 <modulePathToClass>../MITANDAO/bin</modulePathToClass>
 <modulePathToClass>./modules</modulePathToClass>
 <modulePathToClass>file:///home/lula/programs/mitandao/modules</modulePathToClass>
</modulePaths>

You can use absolute or relative paths in this XML. This path has to lead to the first directory of the
package structure. If you use the absolute path, you have to write the protocol prefix file:// at the
beginning. If you use relative paths, they are relative to the directory returned by the system
property user.dir (by System.getProperty(“user.dir”)). This is the directory where the application
was run.
Notice that even in Windows you can use the “/” in the relative paths.

Example:
If your directory looks like this:

/home/lula/programs/mitandao/modules/sk/fiit/mitandao/modules/MyModule.class

And sk.fiit.mitandao.modules.MyModule.class is the full name of your class, than the path
specified in the XML would look like this:

file:///home/lula/programs/mitandao/modules
If you starts your application in the mitandao directory, the relative path would look like this:

./modules

Mitandao – Social network analyzer 12

	What is Mitandao?
	How to create module into the Mitandao
	Introduction
	Modules types overview
	How to create a module

	How to use the user data storage
	Introduction
	How to work with labellers
	How to use this to copy user data

	How to use the Mitandao UI framework
	Introduction
	Automated panel generation
	Constraints

	Providing not reusable panel
	Constraints

	Providing reusable panels
	Constraints

	How to create from variable module parameter
	Introduction
	Variables versus module parameters
	Constraints

	Creating and adding new modules
	Constraints

	Linking modules

